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Text-driven face image generation and manipulation are significant tasks. However, such tasks are quite
challenging due to the gap between text and image modalities. It is difficult to utilize current methods to deal
with both of the two problems because these methods are usually designed for one certain task, limiting their
application in real scenarios. To address the two problems in one framework, we propose a Unified Prompt-
based Cross-Modal Framework (UPCM-Frame) to bridge the gap between the text modality and image
modality with CLIP and StyleGAN, which are two large-scale pre-trained models. The proposed framework
is combined with two main modules: a Text Embedding-to-Image Embedding projection module based on
a special prompt embedding pair, and a projection module mapping Image Embeddings to semantically
aligned StyleGAN Embeddings which can be used in both image generation and manipulation. The proposed
framework is able to handle complicated descriptions and generate impressive results with high quality due
to the utilization of large-scale pre-trained models. In order to demonstrate the effectiveness of the proposed
method in the two tasks, we conduct experiments to evaluate the results of our method both quantitatively
and qualitatively.
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1 Introduction
Text-driven facial image generation and manipulation have drawn great attention, which are
widely desired in many visual tasks, such as book character generation with diverse emotions and
automatic portrait creation under different conditions. Such scenarios containing text descriptions
of persons lead to the tasks of face image generation and manipulation. The tasks are also vital in
many other practical application scenes, such as automatic portrait drawing and image retouching.
In the past, only humans were able to accomplish these tasks due to the challenges below. The first
one is that text descriptions can be abstract and intricate, making it challenging to generate high-
quality visualizations accurately. These descriptions may encompass not only specific attributes
such as hair length or skin color but also abstract characters like mood or personality. The next one
is that generated or manipulated face images must have impressively fine-grained visual details
with high quality, otherwise, they would not satisfy the users. In this article, we manage to handle
both of the tasks of face image generation and manipulation within one unified framework and
solve the two problems simultaneously.
We briefly discuss existing remarkable text-to-image generation methods [3, 12, 18, 22, 29, 31,

33, 36, 39, 41–43, 48, 52] first. The works in previous years [18, 29, 33, 39, 41, 43, 48, 52] train
text-to-image models with paired data, which heavily rely on the quality of dataset during training,
limiting the quality of the generated images and restricting their ability to handle open-world words.
TediGAN-B [42] utilizes a pre-trained language model to extract semantics contained in texts and
forces the semantics of images to be close to the text semantics by optimizing the images themselves.
However, it still encounters difficulties in certain scenarios (e.g., the text contains complex semantics,
as shown in Figure 4) because its optimization method cannot take full advantage of pre-trained
vision-language models and is limited by the initial image. Large-scale models trained on open-
domain data like DALLE-2 [31] or Imagen [36] can handle the semantics in texts but may fail
in the task of generating face images because of the gap between their training data and the
certain domain of face images. Besides, such big models are quite time-consuming and computing
resource-consuming, making them impractical for most normal users.
Then, we conclude image manipulation methods [1, 2, 6, 28] in the aspects of their advantages

and drawbacks. There have been several methods [6, 28] with combined Contrastive Language-
Image Pre-Training (CLIP) [30] and StyleGAN [15, 16] which utilize CLIP to align the semantics
in images and texts. However, there are several drawbacks in these methods. StyleCLIP-O [28]
utilizes optimization-based manipulation method which are time-inefficient. StyleCLIP-LM [28]
trains specific mappers which can only manipulate one attribute with one model. StyleCLIP-GD
[28] sweeps complicated hyper-parameters during inference. StyleGAN-NADA [6] focuses on
the transformation between different domains of images, but cannot manipulate images in single
attribute. Diffusion models [11], as powerful generative models, are also utilized in the task of image
manipulation. Blended-Diffusion [1] leverages CLIP [30] to constrain the semantics of manipulated
images, but its requirement of mask limits its application. InstructPix2Pix [2] applies pre-trained
StableDiffusion [34] as the generator, but performs unsatisfactorily in disentanglement because
the manipulating guidance and the image generator are entangled. Most importantly, most of the
current image manipulation methods take the image to be manipulated as a part of input. This
characteristic means that these methods are dependent on existing images. Although they can be
leveraged as image generation methods by manipulating an existing image guided by texts, the
semantics contained in the origin image which are not controlled may be contrary to the texts,
causing unsatisfactory results.

Given the current situation that existing methods are not able to handle both the tasks of image
generation and manipulation, we are motivated to design an approach to unify the two tasks
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into one single framework. The main challenge lies in the gap between text modality and image
modality. It is critical to bridge the gap, otherwise it would be difficult to transform the semantics
contained in the input texts to the generated or manipulated images. Furthermore, the quality
of output images is also vital. Facing these challenges, our key idea is to utilize two large-scale
pre-trained models, StyleGAN [15, 16] and CLIP [30]. StyleGAN, as one of the most notable GAN
[7] backbones, ensures the image quality. Meanwhile, CLIP is a large-scale text-image aligning
model, which could extract aligned semantic representations from different modalities. With the
two pre-trained models, we can transform the task of bridging the abstract gap between different
modalities into bridging different latent spaces of the pre-trained models, which is more concrete
to be solved.

Based on this idea, we propose an efficient framework named as Unified Prompt-Based Cross-
Modal Framework (UPCM-Frame) which is able to address both the text-to-image generation
and text-guided image manipulation simultaneously. To solve the problem of bridging the gap
between different latent spaces, we introduce two main modules. Overall, we manage to encode
input texts into CLIP Text Embeddings and project the CLIP Text Embeddings to their corresponding
CLIP Image Embeddings in the first module. Then we build another mapping module from image
embeddings to StyleGAN Embeddings within the W space of StyleGAN, which can be used to
generate semantically aligned images with high quality. To be more specific, in the first projecting
module, we propose to employ a specific pair of CLIP Embeddings as prompts, which help to bridge
the gap between the two latent spaces. In our work, prompt embeddings represent “a neutral text
description” and “a neutral image.” We add the distance between the input text embedding and text
prompt embedding to image prompt embedding. The second image-to-StyleGAN mapping module,
containing a trainable deep neural network named CLIP-to-StyleGAN (C2S), maps the input
image embeddings to the StyleGANW latent space. The training data of the network are randomly
sampled with help of the pre-trained StyleGAN. Thus, the training of the network does not need
any external data, avoiding the limitation of training datasets we discuss before. In order to keep
the semantics during the projection, we further design a semantic consistency loss, guaranteeing
the projected StyleGAN embedding can be utilized to generate semantically aligned images.

For image generation task, we can simply leverage the projected StyleGAN embedding at last to
generate the corresponding image. For image manipulation task, we further calculate the distance
between the projected StyleGAN embedding and the prompt StyleGAN embedding. Then, we apply
the distance to the inverse StyleGAN embedding of the input image. Thus, the projected StyleGAN
embedding can be used in the both tasks, solving the two problems simultaneously. In addition,
comprehensive experiments are conducted to analyze the image generation and manipulation
performance of the proposed UPCM-Frame, including comparisons between different methods and
ablation studies.

This article is an extension of our previous work [24]. Our extension lies in the methodology and
experiments. For the method, we extend our image generation framework to a more comprehensive
joint generation-manipulation framework in Section 3.4. We design a method of migrating the
semantics contained in the texts to existing images by adding the distance between the semantics
of input text and prompt to the input image, solving the task of manipulation. Besides, we move
the StyleGAN Embedding from Z space to W space to achieve better disentanglement and image
diversity in Section 3.3. Correspondingly, we re-design the regularization loss employed in the
training process of the C2S projection network, ensuring the projected embeddings are within
the W space. In terms of extensive experimental results, we provide more comparison results
with other state-of-the-art methods of both face image generation and manipulation in Section 4.3
to demonstrate the efficiency of the proposed method and more complete ablation studies in
Section 4.5.
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In summary, this work has the following contributions:

—We propose a unified framework that can handle the text-to-face generation and manipulation
tasks with high semantic consistency, fidelity, and image quality. Compared with previous
works, our method can solve the two problems simultaneously.

—We design a prompt-based projection method between the two latent spaces of CLIP and
analyze the characteristics of prompt embeddings, bridging the semantic gap between different
modalities.

—We develop a C2S network to map Image Embeddings to their corresponding StyleGAN
Embeddings. A novel semantic consistency loss is further proposed to guarantee that the
projected StyleGAN Embeddings are semantically aligned with the input texts.

The remainder of the article is organized as follows. In Section 2, we briefly review current
text-to-image cross-modality works. In Section 3, we present the methodology of the proposed
UPCM-Frame. Later in Section 4, we provide qualitative and quantitative comparisons to prove the
effectiveness of the proposed method in both of the image generation and manipulation tasks. We
also provide implementation details, more experimental results, ablation studies on loss functions
and the prompt design, and discussion on limitations in Section 4. Finally, we conclude our work
in Section 5.

2 Related Work
2.1 Text-to-Image Alignment
To transform a text into an image, it is essential to ensure the semantic alignment between the text
and the image. In the early stages of research, various methods were developed to achieve this
goal which train separate text and image encoders [4, 13, 19, 21, 38, 44–46, 49–51]. However, these
methods which are utilized in specific text-to-image translation tasks are limited by the vocabulary
of training datasets.

Recently, the success of attention mechanism [40] in natural language processing has led to the
adoption of transformers [40] as baseline models for multimodal tasks. CLIP [30], as a notable
example, is built by training two transformer encoders on a large corpus of text-image pairs collected
from various sources online. This model consists of two latent spaces: one for texts and another for
images. Additionally, researchers have discovered multi-modal neurons in CLIP [30], which has
inspired further exploration in this area.

In this work, we adopt CLIP as our text-to-image alignment checking module. By leveraging its
capabilities, we aim to achieve accurate semantic alignment between texts and images to provide
supervision for the task of text-to-image translation.

2.2 Text-to-Image Translation
Text-to-image translation methods can be roughly classified into two categories based on the
generation models they employ. The first category does not make use of pre-trained models, such
as StyleGAN [15, 16]. This kind of methods build images generators from scratch. GAN-INT-CLS
[33], as the pioneer work, employs a conditional GAN [26] guided by text embeddings extracted
from a pre-trained text encoder to achieve the goal of text-to-image translation. Following this
approach, DM-GAN [52] introduces a memory writing gate, and DF-GAN [39] proposes a backbone
that generates images with Wasserstein distance. Another notable example is DALLE [32], which
has about 12 billion parameters and exhibits great quality in the task of text-to-image translation.
The second category utilizes pre-trained generation models to improve the image quality and

shorten the training process. However, due to the domain limitations of these models, the images
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they are able to generate may have specific constraints. For instance, TediGAN-A [41] maps input
text to the latent space of StyleGAN, and TediGAN-B [42] optimizes an embedding in StyleGAN’s
latent space utilizing cosine similarity of text and image embeddings encoded by CLIP as a loss
function. Due to the usage of CLIP, TediGAN-B [42] can handle open-world texts. However, its
performance can be random and visually unappealing. Moreover, StyleCLIP [28] proposes three
methods of image manipulation, and the optimization method can be leveraged as an method of
image generation by providing an origin image. StyleGAN-NADA [6] transfers images to other
domains by fine-tuning StyleGAN with the guidance of texts. In our work, we adopt pre-trained
StyleGAN2 [16] for generating images from textual descriptions. Our method bridges the latent
spaces of different pre-trained models, leveraging the abilities of existing models and reducing the
time and computing resource cost.

2.3 Text-Guided Image Manipulation
Different with text-to-image translation, text-guided image manipulation aims to manipulate input
images guided by the input texts describing desired attributes, but with the properties of non-
descriptive image parts left unchanged. Based on the similarity between manipulation task and
generation task, numerous image manipulation methods with existing generative models such as
StyleGAN [15, 16] have been proposed to achieve improved image quality and shorter training
processes. These techniques [9, 27, 28, 41, 42, 47] encode images into a latent space, allowing for
manipulation through modifications to the latent vectors. In TediGAN-A [41], a visual-linguistic
similarity module is proposed to align two modalities in the latent space of pre-trained StyleGAN
[16]. More recently, StyleCLIP [28] combines the generative power of StyleGAN [16] with the
image-text representation ability of CLIP [30] to explore manipulation directions, eliminates the
need for text during the training process and enables zero-shot inference. Recently, diffusion model
[11, 35] based image manipulation methods [1, 2, 25, 31] have achieved excellent performance.These
methods adopts pre-trained diffusion models [34] as generators, achieving high image quality and
diversity. However, they usually performs unsatisfactory disentanglement because the guidance
and generator are entangled. Our method designs an editing embedding which is irrelevant to
the input image in the latent space of StyleGAN. Thus, our framework can be used in both image
generation and manipulation because of the input-independent latent embedding.

3 Prompt-Based Modality Bridging
In this section, we depict the proposed prompt-based modality bridging method. The method
projects input CLIP Text Embeddings (which is abbreviated as �)�8=?DC and C denotes CLIP [30])
to their corresponding CLIP Image Embeddings (which is abbreviated as ���8=?DC ) by a prompt
embedding pair �)�?A><?C and ���?A><?C , as shown in Figure 1(a) and (b). Then, ���8=?DC and
���?A><?C are further projected to their StyleGAN W Embeddings (abbreviated as (�8=?DC and
(�?A><?C respectively). For image generation, the (�8=?DC is directly leveraged by pre-trained
StyleGAN [16] to generate the semantically-aligned image, as shown in Figure 1(c). (1) For image
manipulation, we compute the distance between (�8=?DC and (�?A><?C and add the distance to the
inverse StyleGAN Embedding of the image to be manipulated (abbreviated as (�8=E4AB4 ), getting
the edited StyleGAN Embedding (i.e., (�438C43 ) which can be used to generated the manipulated
image, as shown in Figure 1(c). (2) We introduce the method in detail in the following subsections.

3.1 Design of Prompt Embedding
ptThe first step of modality bridging is projecting �)�8=?DC to ���8=?DC by a pair of prompt embed-
dings. As we point out in Section 1,�)�?A><?C and���?A><?C represent “a neutral text description”
and “a neutral image” respectively, ensuring that the distances between the prompt embeddings
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Fig. 1. The entire framework of UPCM-Frame. CLIP-T and CLIP-I denote CLIP text encoder and CLIP image
encoder. In (a), we show the method of designing prompts. The ���?A><?C is extracted from a randomly
sampled set of images from StyleGAN and the �)�?A><?C is obtained from a certain sentence by CLIP text
encoder. In (b), we illustrate the projection process with help of the prompt embedding pair obtained in (a).
At last, (c) shows results of image generation and manipulation and the method of applying the Input SE and
Prompt SE in these tasks. The detailed architecture of C2S projection network is further shown in Figure 2.
SE, StyleGANW Embeddings.

and input embeddings will not being long. As a result, the design of prompt embedding pair is vital
to the projection. The method of leveraging the prompt embedding pair is introduced in Section 3.2
in detail.
In order to ensure that the prompt embeddings can represent the centers of the corresponding

latent space, the average cosine similarity between the prompt embedding and all the other em-
beddings in the latent space should be the largest. We employ a large subset of embeddings to
represent the whole latent space, containing = embeddings. We depict the method of obtaining
such a subset of latent embeddings in the end of the subsection. The lengths of all the embeddings
are normalized because the semantics only depend on their orientations. Denoting y as the prompt
embedding and x8 as the 8th embedding in the subset, the target described before can be formulated
as a programming problem:

max
y

I =
1
=

=∑
8=1

y · xi
|y| · |xi |

,

s.t. |y| = 1, (1)

where I denotes the average costing similarity. It is difficult to solve such a non-linear programming
problem directly. Thus, we manage to leverage the physical meanings of such problem to simplify it.
As we mention before, the lengths of all the embeddings are all normalized. Thus, Equation (1)

can be transformed into

max
~

I =
1
=

=∑
8=1

~ · x i

= ~ · 1
=

=∑
8=1

x i . (2)

The physical meaning of Equation (2) is a hyperplane in the dimension of the latent space and I
represents the constant parameter. Larger absolute value of I means bigger distance between the
hyperplane and the origin point. Besides, the feasible region of the programming problem is |y| = 1,
which is a hypersphere. As the target of the problem is maximizing I, we can move the hyperplane
as possible from the origin point, until the hypersphere and the hyperplane are tangent. At this
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time, y will be the unit normal vector of the hyperplane. The unit normal vector of the hyperplane
is given as

~′ =
1
=

=∑
8=1

x i,~ =
~′

|~′ | . (3)

It is obvious that the vector y′ is the arithmetic mean value of all the = embeddings in the subset.
Then, we introduce the specific method of getting image prompt embedding ���?A><?C and

text prompt embedding �)�?A><?C . For ���?A><?C , we randomly generate images by pre-trained
StyleGAN [16] and extract their ���s by CLIP [30], getting a set of ���s which can be utilized to
obtain the���?A><?C via Equation (3). For�)�?A><?C , it is non-trivial to get a descriptive texts with
diverse semantics containing all the attributes. Besides, texts themselves are carriers of semantics.
Thus, we appoint a specific sentence and extract its �)� as �)�?A><?C , following the method
introduced in NLP domain [20]. For instance, we set the �)� of the sentence “A normal human
face.” as the �)�?A><?C . Such setting is further discussed in Section 4.5. It is noted that if there
exists a high-quality text set, the proposed method can be utilized to extract a better �)�?A><?C

than the manually specified one.

3.2 CLIP Embedding Projection with Prompt Pair
In this subsection, we introduce the method of projecting �)�8=?DC of the input text description to
its corresponding ���8=?DC which can be leveraged in both image generation and manipulation by
the prompt embedding pair�)�?A><?C and���?A><?C . As we discuss before, the prompt embedding
pair represents the centers of each latent space, thus we can move the distance between �)�8=?DC
and �)�?A><?C to ���?A><?C , getting ���8=?DC . In conclusion, the projection can be formulated as

���8=?DC = ���?A><?C + (�)�8=?DC −�)�?A><?C ). (4)

Such a projection is simple yet effective. The simple summation represents the idea of “adding a
specific prompt to implement the query” which is introduced in [20] which is the main perspective
of prompt. In addition, we propose that the subtraction can be regarded as “removing a certain part
of the origin embedding to exclude the exact formulation.” Then, ���8=?DC can be further projected
to (�8=?DC .

We give a brief discussion of why such a simple linear operationworks. In short, it is guaranteed by
the characteristic of CLIP [30] itself. We explain it by giving an example. Assuming that there exists
a text-image pair which has aligned semantics (e.g., “A girl with short hair.” and a corresponding
image), we manually edit one single attribute of the image without affecting any other attributes
and change the text correspondingly (e.g., lengthen the hair of the girl and replace the origin
sentence with “A girl with long hair.”). In this way, we obtain a new pair text and image which is
still semantically aligned. Thus, the �)�-��� pair also has large cosine similarity due to the ability
of CLIP (otherwise, we can repeat such manipulating operations and finally getting a semantically
aligned text-image pair with �)�-��� pair which has low cosine similarity, and this case is in
conflict with the characteristic of CLIP). This example proves that if we manipulate both the text
and image with the same semantic, their �)� and ��� will change roughly collinearly. Similar
linear operations are also used in previous works [6, 28].
Another perspective to explain the linear operation is thinking about the “semantic distance”

in two spaces. Assuming that there are two semantically aligned pair of texts and images, we
name their ���s and �)�s as ���1, �)�1 and ���2, �)�2, respectively. Due to the characteristic
of CLIP [30], ���1 and �)�1 are roughly co-linear, also for ���2 and �)�2. Thus, the distances
between ���1 and ���2 should be close to the distance between �)�1 and �)�2, otherwise it will
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Fig. 2. The detailed architecture of C2S projection network. FC, fully connected layer.

be contrary to the co-linearity. Hence, we have

���1 −���2 = �)�1 −�)�2 . (5)

In our scenario, the prompt embedding pair���?A><?C and�)�?A><?C represent the centers of each
latent space. Thus, they are semantically aligned embeddings. Thus, we can simply replace one of
two pairs in Equation (5) and transform it into

���1 = ���?A><?C +�)�1 −�)�?A><?C , (6)

where���1 and�)�1 are also a pair of aligned embeddings. In this way, we can get the semantically
aligned ��� of a certain input �)�8=?DC , which is actually Equation (4).

In practice, we multiply the difference between �)�8=?DC and �)�?A><?C with a constant factor,
controlling the distinctiveness of projection. The final equation of projection is

���8=?DC = ���?A><?C + U · (�)�8=?DC −�)�?A><?C ), (7)

where U is the factor which can be changed. Empirically, we set it to 1.75, which is an appropriate
value for most cases.

3.3 CLIP to StyleGAN Embedding Projection
In order to leverage the���8=?DC in image generation and manipulation with the help of pre-trained
StyleGAN, we project���8=?DC to its corresponding (�8=?DC which can be used to generate an image
whose ��� is ���8=?DC . We build a neural network containing fully connected (FC) layers with
dense connections, named as C2S projection network. Its architecture is given in Figure 2.
We first build a dataset containing a large amount of ���-(� pairs to train the C2S network.

We randomly sample (�s in the StyleGAN W space by sampling from Z space (standard normal
distribution) and mapping the Z space embeddings to (�s by the StyleGAN mapping network.
Then we generate images by feeding the (�s to the pre-trained StyleGAN and extract their ���s of
the resulting images by CLIP. By this means, we can get infinite training pairs for C2S network.
In terms of the loss function, it should meet two requirements as follows. First, the network

should ensure the projected (�s can be leveraged to generate images which have close ���s as
inputs. Second, the projected (�s should be in theW space of StyleGAN.
The projected (�s should have the same semantics as input ���s. To this end, we utilize the

projected (�s to generate images, extract ���s of them and take minimizing the cosine similarity
between the ���s of generated images and the input ���s as a loss function. Such loss function is
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called reconstructed semantics consistency loss,LB4<_2>=B . Denoting� as the pre-trained StyleGAN
and CLIP� as the image encoder of CLIP, the loss is given by

LB4<_2>=B = �>B�8B (���8=?DC ,CLIP� (� ((�?A43 ))). (8)

To guarantee that the projected (�s are in theW space, we simply leverage anmean square
error (MSE) loss between the images generated from true (�s and projected (�s. The loss ensures
the quality of generated images, which means the projected (�s are in the latent space of StyleGAN.
The loss is called regularization loss. Denoting the (� in the training ���-(� pairs as (�CAD4 , the
loss is

LA46 = | |� ((�?A43 ) −� ((�CAD4 ) | |2. (9)

We also leverage a vanilla L1 loss between the projected (�s and true (�s as a basic constraint,
which is given by

L!1 = | |(�?A43 − (�CAD4 | |1 . (10)

In summation, the entire loss employed during training is

L = _B4<_2>=B · LB4<_2>=B + _!1 · L!1 + _A46 · LA46, (11)

where _B4<_2>=B , _!1, and _A46 are the weights of each of the loss terms. The specific values of them
are given in Section 4.2.

3.4 Image Generation and Manipulation from StyleGAN Embedding
After getting the StyleGAN embedding (�8=?DC , we can use it in both image generation and manip-
ulation. For image generation, we can simply feed (�8=?DC to the pre-trained StyleGAN. For image
manipulation, we first inverse the origin image �>A868= to its corresponding (�>A868= by optimizing a
randomly initialized (� minimizing a combination of MSE and LPIPS between the origin image
and the generated image

(�8=E4AB4 = argmin
(�

( | |�>A868= −� ((�) | |2

+ _?4A24? · LPIPS(�>A868=,� ((�))) . (12)

Then we add the difference between (�8=?DC and (�?A><?C to (�8=E4AB4 , getting the manipulated
(�438C43 . The calculation is given by

(�438C43 = (�8=E4AB4 + ((�8=?DC − (�?A><?C ). (13)

Such a simple manipulation is supported by the disentanglement of StyleGAN W space, which is
validated in the origin paper of StyleGAN [15, 16]. Then, the (�438C43 can be used to generate manip-
ulated image by a pre-trained StyleGAN. Thus, benefiting from the design of prompt embeddings,
the proposed method can be a unified framework for both image generation and manipulation.
Although, we can utilize image manipulation methods as image generation methods by giving
origin images and manipulating the images by the input texts, the proposed method outperforms
significantly than such pseudo image generation methods, as we will show later in Section 4.3.

4 Experimental Results
In this section, we conduct experiments to prove the performance of the proposed method. We
provide the compared baseline methods of both image generation and image manipulation in Sec-
tion 4.1, then give implementation details to ensure the reproducibility in Section 4.2. In Section 4.3,
we show the results of user studies and compare the results of our method and other baseline
methods both quantitatively and qualitatively. We give further experimental results in Section 4.4.
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In Section 4.5, we conduct ablation studies on the design of prompt embeddings and loss functions.
At last, we give failure cases and discuss the reasons to the limitations of the proposed method in
Section 4.6.

4.1 Baselines
To demonstrate the superiority of our method, we compare our results with several state-of-the-
art baseline methods. The baselines include two aspects: image generation baselines and image
manipulation baselines. The image generation baselines include DF-GAN (CVPR’22) [39], TediGAN-
B (arXiv’21) [42], StyleCLIP-O (ICCV’21, “O” denotes “Optimization”) [28], and AI Illustrator (ACM
MM’22) [24]. The image manipulation baselines include TediGAN-B (arXiv’21) [42], InstructPix2Pix
(CVPR’23) [2], and StyleCLIP-GD (ICCV’21, “GD” denotes “Global Direction”) [28]. It should be
noticed that we leverage TediGAN-B [42], which is an image manipulation method, as a pseudo
image generationmethod by giving it initial image embeddings randomly. Suchmethod of extending
TediGAN-B is proposed in its paper own. The results of baseline methods except DF-GAN [39] are
generated by their official codes, hyper-parameters and models. For DF-GAN, we re-train it on
Multi-Modal CelebA-HQ dataset [41].

4.2 Implementation Details
In this section, we provide implementations details to ensure that all of our results are reproducible.
The implementation details include two parts: details of the projection from �)�8=?DC to ���8=?DC
and details of the projection from ���8=?DC to (�8=?DC . They are given in sequence.
We give the details of the projection from �)�8=?DC to ���8=?DC first. As we state in Section 3.2,

such the projection is a linear operation, thus the details are only about getting prompt embeddings.
For the process of getting ���?A><?C , we randomly sample 150,000 images to compute the average
���. We employ the sentence “A normal human face.” to extract the �)�?A><?C . Then, we state the
details of the projection from ���8=?DC to (�8=?DC . The ���-(� pairs of the 150,000 images sampled
for getting���?A><?C is also leveraged in the training of the C2S network. The abstract architecture
of C2S network is given in Figure 2. The full architecture is shown in Table 1 and the specific
architecture of dense blocks is given in Table 2. The entire network is combined with five dense
blocks as the body part, two FC layers as the head part, and the tail part respectively. PReLU [8]
is used as activation function. Dropout layers [37] with the ratio of 0.1 and BatchNorm layers
[14] are applied to help convergence. During training, the batch size is set to 16 and the model is
trained for 380,000 iterations. All the training are done on two NVIDIA 2080Ti GPUs. We utilize
Adam [17] as the optimizer. The learning rate is set to 1 × 10−4 initially. We use cosine annealing
to the learning rate and it will drop to 1 × 10−7 at last. The loss weights, _!1, _B4<_2>=B , and _A46
are set to 0.3, 1.0 and 0.3. During the training process of C2S network, we normalize the length
of input ��� to

√
512 instead of 1. The reason is the outputs of the C2S network are StyleGAN

W embeddings [15], whose lengths are obviously not 1. As the StyleGAN W embeddings are
projected from StyleGANZ embeddings, we estimate the lengths of StyleGANW embeddings
using the lengths of StyleGANZ embeddings. The StyleGANZ space contains 512 dimensions
and the distribution of value of each dimension is i.i.d. standard Gaussian distribution (i.e.,N(0, 1)).
Thus, the average length of StyleGAN Z embeddings is

√
512. Hence, we normalize the lengths

of input ��� to
√
512, reducing the gap between the inputs and outputs of the network. This trick

would help the model converge faster and better.
For image manipulation, we inverse the origin image to its corresponding (�8=E4AB4 by optimizing

a randomly initialized (�. We optimize the (� for 500 iterations with the learning rate of 1 × 10−2

and the weight _?4A24? is set to 0.01.
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Table 1. The Detailed Architecture of C2S Network

Id Block Name In Size Out Size

Head part 1-0 FC+PReLU 512 512
1-1 FC+PReLU 512 512

Body part

2-0 Dense block 512 512
2-1 $1-1 + $2-0 - -
2-2 Dropout - -
2-3 Dense block 512 512
2-4 $2-2 + $2-3 - -
2-5 Dropout - -
2-6 Dense block 512 512
2-7 $2-5 + $2-6 - -
2-8 Dropout - -
2-9 Dense block 512 512
2-10 $2-8 + $2-9 - -
2-11 Dropout - -
2-12 Dense block 512 512
2-13 $2-11 + $2-12 - -
2-14 Dropout - -

Tail part 3-0 FC+PReLU 512 512
3-1 FC 512 512

The detailed architecture of dense blocks is given in Table 2. All the
dropout layers have a dropout ratio of 0.1.
“$” indicates the layer output with the corresponding Id, “FC” indicates
“fully connected layer.”

Table 2. The Detailed Architecture of Each Dense Block

Id Layer Name In Size Out Size

0 FC+BN+PReLU 512 512
1 FC+BN+PReLU 512 512
2 Concat(input, $1) - 1,024
3 FC+BN+PReLU 1,024 512
4 FC+BN+PReLU 512 512
5 Concat($2, $4) - 1,536
6 FC+BN+PReLU 1,536 512
7 FC+BN+PReLU 512 512
8 Concat($5, $7) - 2,048
9 FC+BN+PReLU 2,048 512
10 FC+BN+PReLU 512 512
11 Concat($8, $10) - 2,560
12 FC+BN+PReLU 2,560 512
13 FC+BN+PReLU 512 512

“$” indicates the layer output with the corresponding Id, “FC” indicates
“fully connected layer,” and “BN” indicates “BatchNorm layer.”
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Fig. 3. Face image generation results on descriptions with limited words within a certain dictionary by several
methods. The major attributes are underlined. [Zoom in for best view]

4.3 Comparisons to State-of-the-Art Methods
The proposed method is a unified framework for both image generation and image manipulation.
Thus, we provide the results separately. We show comparisons of the results of different image
generation methods first. Because DF-GAN can only generate images from sentences containing
only the words in the dictionary of the training dataset, we first show image generation results
with such limited sentences. Such results are shown in Figure 3. It should be noticed that the
results of applying TediGAN-B as an image generation method are not satisfying, because the
initial image embeddings may lead to contrary semantics of the input texts. The proposed method
can translate all the semantics in the input texts to the generated images while other methods
can not guarantee. Then, we show results of translating open-world texts with more complicated
words and semantics in Figure 4. The results further prove the effectiveness of image generation
and complicated semantic translation of the proposed method (e.g., handling “wrinkles” and “Cho,”
which is a Chinese name, leading to an Asian girl). In some cases, the generated facial images have
closed eyes which do not in contradiction to the input texts. We speculate that the reason for this

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 12, Article 386. Publication date: November 2024.



Prompt-Based Modality Bridging for Unified Text-to-Face Generation 386:13

Fig. 4. Face image generation results on descriptions with open-world words by several methods. The major
attributes are underlined. [Zoom in for best view]

phenomenon is the bias of CLIP on facial images because the input size of CLIP is 224 × 224, which
is much smaller than the StyleGAN image size. The resize process would make the small parts on
faces like eyes smaller, which means the closed eyes and slightly open eyes become semantically
similar. such the issue can be solved by specifying “big eyes” or “pretty eyes” in the text inputs,
which have been shown in Figures 7 and 8.

The method can generate multiple results from one single input text, as shown in Figure 5. Such
diversity is supported by the style-mixing characteristic of StyleGAN. We pass a random (� to
the first few layers of StyleGAN, getting diverse results. To make the results in other sections
reproducible, they are generated without applying random style-mixing.

Then, we show image manipulation results from the proposed method and other baseline methods
in Figure 6. The original images are collected from the dataset of FFHQ, CelebA [23], or generated
by pre-trained StyleGAN. When manipulating, the used phrases will be placed in a whole sentence
(e.g., “curly hair” will be extended as “A human face with curly hair.” and “plump” will be extended
as “A plump face”). It can be seen that the proposed method achieves better disentanglement and
semantic alignment to the input texts than state-of-the-art baseline methods, and gets visually
more pleasing results (e.g., semantic alignment of “long hair.” and visual quality of “curly hair.”).
We also give qualitative metrics to demonstrate the efficiency of the proposed method. We

leverage FID [10] (when calculating FID, the reference set is a subset containing 10,000 images of

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 12, Article 386. Publication date: November 2024.



386:14 Y. Ma et al.

Fig. 5. Different results from one description by applying random style-mixing. The major attributes are
underlined.

Fig. 6. Manipulation results for human faces. The input image is the inversion to a real image. [Zoom in for
best view]

FFHQ [15] dataset. The image generation test set and manipulation test set are the sets used in
the user study) to evaluate the quality of images and conduct a user study to obtain the subjective
metrics. We further utilize CLIP Distance to evaluate the semantic alignment in the generation
task (which is not used in the manipulation task because it is not suitable to check whether the
whole manipulated images are aligned to the manipulation texts). For image generation, the users
are commanded to judge the best one result in the aspect of photo-realistic (abbreviated as Real.
Prefer.) and in the aspect of semantic alignment (abbreviated as Acc. Prefer.). The user study
contains 80 text-image pairs. For image manipulation, the users are commanded to judge the best
two results in the aspect of semantic alignment (abbreviated as Acc. Prefer.) and disentanglement
(abbreviated as Dis. Prefer.). The user study contains 34 manipulation cases. In total, the user study
contains 114 queries and 12 users, collecting 1,368 votes. The metrics of image generation and
manipulation are reported in Tables 3 and 4, respectively. The results show that, for the subjective
metric, the proposed method achieves the best FID in both image generation and manipulation;
for the objective metrics, the proposed method outperforms all the other methods in the image
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Table 3. The Comparisons of Metrics between Our Method and Other Methods in the Task of Face
Image Generation

Subjective Objective

Acc. Prefer. (%) ↑ Real. Prefer.(%) ↑ FID ↓ CLIP Distance ↓
Ours 49.49 43.32 114.19 0.7295
PCM-Frame [24] 40.52 39.40 118.25 0.7417
StyleCLIP-O [28] 4.83 16.16 170.66 0.7603
TediGAN-B [42] 5.16 1.12 122.75 0.6470a

aTediGAN-B takes CLIP Distance as part of optimization target, leading to a much better result on this metric.
The best numbers are bold.

Table 4. The Comparisons of Metrics between Our Method and Other Methods in the Task of Face
Image Manipulation

Subjective Objective

Acc. Prefer. (%)↑ Dis. Prefer.(%) ↑ FID ↓
Ours 40.77 42.66 167.61
InstructPix2Pix [2] 14.10 8.46 185.26
StyleCLIP-GD [28] 39.26 41.45 170.59
TediGAN-B [42] 5.87 7.43 180.14

The best numbers are bold.

Fig. 7. Further translation results of face images of open-world text descriptions. The major attributes are
underlined. [Zoom in for best view]
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Fig. 8. Further translation results of face images of open-world text descriptions. The major attributes are
underlined. [Zoom in for best view]

Fig. 9. Further manipulation results of face images of complicated text descriptions. [Zoom in for best view]
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Fig. 10. Further manipulation results of face images of complicated text descriptions. [Zoom in for best view]

generation task and performs comparable with state-of-the-art image manipulation methods in
the image manipulation task. It should be noticed that all the results of both image generation and
image manipulation of our method are gotten from one unified model. Such results demonstrate
the superiority of the proposed method.

4.4 Further Results of Image Generation and Manipulation
In this section, we show more diverse results in both image generation and image manipulation.
Image generation results are shown in Figures 7 and 8 while image manipulation results are shown
in Figures 9–11. The results show that the proposed method can handle complicated semantics in
the texts.
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Fig. 11. Further manipulation results of face images of complicated text descriptions. [Zoom in for best view]

4.5 Ablation Study
We conduct two ablation studies on the proposed modules. We first study the method of designing
the prompt embedding. As we discussed in Section 3.1, the ���?A><?C is calculated by averaging a
set of���s and the�)�?A><?C is extracted from a certain sentence by CLIP. For���?A><?C , we give
an intuitive method of getting���?A><?C : Generate an image from an all-zero vector in StyleGANZ
space and employ its ��� as the ���?A><?C . Because StyleGAN Z space follows standard Gaussian
distribution, the all-zero vector is the center of the space. Thus, such method makes sense seemingly.
We leverage these prompts to generate the 80 texts used in Section 4.3. We give visually comparison
results in Figure 12 and give qualitative comparisons in Table 5. It is obvious that such a ���?A><?C

leads to worse image quality, indicating the “physical center” of StyleGAN latent space is not the
“semantic center.” For �)�?A><?C , it seems better to calculate the average embedding from a set of
descriptive texts. Thus, we utilize the text set of Multi-Modal CelebA-HQ dataset to get a�)�?A><?C .
The results are also given in Figure 12 and Table 5. It can be seen that such a�)�?A><?C has distinct
bias to a younger age, leading to worse semantically alignment. We consider that the reason is the
bias of the dataset itself. The captions in it of children will contain the words like “young,” but the
captions of adults will not be combined with explicit expressions like “grown.” This phenomenon
proves the claim we give in Section 3.1: the quality of text set will affect the quality of �)�?A><?C .
However, it is non-trivial to collect such a face-description dataset.

Then, we give ablation studies on the loss design in Figure 13 and Table 6. It can be seen that the
regularization loss LA46 assists the network to project ���s to (�s within the latent space which
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Fig. 12. The ablation study on the prompt design. The results show that the ���?A><?C extracted from the
image generated from all-zero Z embedding leads to incorrect semantics and worse image quality; the
�)�?A><?C obtained from Multi-Modal CelebA dataset leads to age bias to the results, although it can be
leveraged to generate semantically correct results.

Table 5. Qualitative Results of the Ablation Study
on Prompt Design

Zero ���?A><?C �)�?A><?C Proposed

FID ↓ 130.13 117.33 114.19
CLIP Distance ↓ 0.7451 0.7382 0.7295

The best numbers are bold.

Fig. 13. The ablation study on the loss functions we propose. The results show that the LA46 assists to
generate reasonable images and the LB4<_2>=B keeps the semantics in the texts.
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Table 6. Qualitative Results of the Ablation Study on Loss Design

w/ L1 Loss w/ L1 and Reg Loss Proposed

FID ↓ 211.13 113.21 114.19
CLIP Distance ↓ 0.7811 0.7645 0.7295

The best numbers are bold.

Fig. 14. The failure cases. The successful attributes are in blue and failed attributes are in red. [Best view in
color]

can be used to generate images with high fidelity and the reconstructed semantics consistency loss
LB4<_2>=B keeps the semantics contained in the input texts.

4.6 Limitations and Discussions
The proposed method is limited in two aspects. The first case is, if the expected image is out of the
distribution of pre-trained StyleGAN, the image cannot be generated. The second case is, if there
are several persons which are described in one input sentence, the framework will be confused and
synthesize an face which has attributes from different persons. Such limited cases are shown in
Figure 14. The reasons to these two limitations are relatively clear. The reason to the first failure
case is that some images with rare semantics are difficult to be handled due to the limitation of
StyleGAN itself. To achieve better performance, we can consider leveraging better open-world
image generators. The reason to the second failure case is that CLIP is also has limited. There have
been several works [5, 31, 36] proving the CLIP Text Encoder performs not satisfying enough on
multi-object decomposition. This disadvantage of CLIP leads to confusing representations, making
the model generate hybrid images.

5 Conclusions
In this work, we propose a unified framework for both face image generation and manipulation.
The proposed framework, taking advantage of large-scale models including CLIP and StyleGAN,
has the ability to handle various text inputs with complicated semantics and generate new images
with impressively high semantic alignment, quality, and fidelity. The proposed method does not
need any external training data. To demonstrate the efficiency, we conduct sufficient experiments
and get superior objective and subjective metrics comparing with other state-of-the-art methods.
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